

SUBJECT DATASHEET

Technology theories

BMEGT41BX4U000-00

BMEGT41BX4U000-00 2025.07.28 2:36 1/5

I. SUBJECT DESCRIPTION

1. SUBJECT DATA

Course tymes and lessens

Subject name

Technology theories

ID (subject code) BMEGT41BX4U000-00

Type of subject

contact lessons

Course types and lessons		<u>Type of</u>
Type	Lessons	assessment
Lecture	2	seminar grade
Practice	0	Number of
Laboratory	0	<u>credits</u> 3

Subject Coordinator

Name Position Contact details

Héder Mihály associate professor heder.mihaly@gtk.bme.hu

Educational organisational unit for the subject

Department of Philosophy and History of Science

Subject website

www.filozofia.bme.hu

Language of the subject

HU

Curricular role of the subject, recommended number of terms

Programme: Elective subjects Subject Role: Elective Recommended semester: 0

Direct prerequisites

Strong None
Weak None
Parallel None
Exclusion None

Validity of the Subject Description

Approved by the Faculty Board of Faculty of Economic and Social Sciences, Decree No: 580501/3/2025 registration number. Valid from: 2025.07.10.

BMEGT41BX4U000-00 2025.07.28 2:36 2/5

2. OBJECTIVES AND LEARNING OUTCOMES

Objectives

The goal of this course is to introduce the theories of technology regarding: its place in a society, the possibilities of control, how it changes; how innovation happens and how it shapes the future. The main topics covered are: engineering epistemology; large technological systems; push and pull innovation models; Schumpeterian innovation; risk and innovation; technology diffusion and adoption models; control and regulation of technology; technological startup theories. The course is facilitated by case studies. These may include: history of Kanban and agile methodology; history of AI; industrial revolutions; history of prizes like the X-prize; technological disasters; posthuman technology; internet; GMO; etc. This is an indicative list of case studies, some, but not all of these case studies will be discussed, based on student preference, and new ones may be introduced.

Academic results

Knowledge

- 1. knows the basic activities, facts, limits of engineering and technology
- 2. knows the basic methdodological and legal contest of impact assessments and impact studies
- 3. knows the epistemic methods and their limits of engineering management, as well as the ethical constraints
- 4. knows and understands the aspects, foundations and terminology of the ancillary topics indispensable to her main profession: environmental protection, quality assurance, legal, economical and managerial fields.

Skills

- 1. applies integrated knowledge, to solve multi-disciplinary problems
- 2. possesses a keen sense of responsibility, quality; capability assessment and self-assesment, analysis and synthesis
- 3. is able to rely on intarnational professional background literature

Attitude

- 1. open to self-education and self-improvement
- 2. is able to think in systems

Independence and responsibility

- 1. possesses a sense of responsibility for sustainable development
- 2. stands up for the fundamental values of the field

Teaching methodology

lecture and guided discussion

Materials supporting learning

- Rudi Volti: Society and Technological Change, Worth Publishers 2017.
- Joel Mokyr: Levers of Riches, Oxford University Press, 1990.
- COLLINGRIDGE, David. The social control of technology. (1982). ISBN: 978-0312731687

II. SUBJECT REQUIREMENTS

TESTING AND ASSESSMENT OF LEARNING PERFORMANCE

General Rules

The evaluation of the outcomes outlined in 2.2 by class activity, simple homework and three midterm exams.

Performance assessment methods

Three midterm exams, complemented by extra points earned during lectures and points for the homework.

Percentage of performance assessments, conducted during the study period, within the rating

1. general course assessment: 20
2. general course assessment: 20
3. general course assessment: 20

homework: 30extra points: 10total: 100

Percentage of exam elements within the rating

Conditions for obtaining a signature, validity of the signature

Issuing grades

Excellent	94
Very good	88-93
Good	75-87
Satisfactory	61-74
Pass	50-60
Fail	0-49

Retake and late completion

Two out of the three midterms may be re-taken in the retake period. The better score will be counted for any midterms.

Coursework required for the completion of the subject

participation in contact hours 28 Homework 14 preparation for contact hours 48 Grand Total 90

Approval and validity of subject requirements

Consulted with the Faculty Student Representative Committee, approved by the Vice Dean for Education, valid from: 07.07.2024.

BMEGT41BX4U000-00 2025.07.28 2:36 4/5

III. COURSE CURRICULUM

THEMATIC UNITS AND FURTHER DETAILS

Topics covered during the term

Overview of technology definitions and theories Relation between technology and social well-being Schumpeterian innovation Technology

and Risk epistemology of engineering Technology and regulation Push, Pull, Cycles Technological lock-in Technology readiness levels leapfrog

and other adoption modes Risk and innovation technology assessment

Additional lecturers

Approval and validity of subject requirements

BMEGT41BX4U000-00 2025.07.28 2:36 5/5